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Summary

The molecular structures of the title compounds have been determined by
gas phase electron diffraction methods. The Si—Mn and Ge—Mn bond lengths
are 240.7 = 0.5 and 248.7 £ 0.2 pm respectively and the C—Mn—C angles in the
silyl and germyl cases are 94.5 + 2° and 97 * 2° respectively. Comparisons are
made with the reported structure of CH;Mn(CO);s and He' photoelectron spectra
of these compounds in an attempt to determine the extent of d -+ d m-bonding
in the Si—Mn or Ge—Mn bonds.

Introduction

In silyl- and germyl-transition metal complexes there exists the possibility
of multiple bonding between the silicon, or germanium, atom and the transition
metal atom, involving unoccupied silicon or germanium d orbitals. It is therefore
of interest to determine the molecular structures of some of these complexes to
see whether there is any stereochemical evidence for multiple bonding. However
up to the present the only compound of this type whose gas phase structure
has been determined is silylcobalt tetracarbonyl [1], so we have determined the
gas phase structures of silylmanganese pentacarbonyl and germylmanganese
pentacarbonyl! by electron diffraction.

From a multiple bonding point of view the most important parameters are
the silicon—manganese and germanium—manganese bond lengths. These will be
compared with ihe (methyl)carbon—manganese bond length in methylmanganese
pentacarbonyl [2] where there is no possibility of such multiple bonding.

It is also interesting to find out whether these structures bear out tke
conclusions from the He! photoelectron spectra of these compounds [3] that
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d —» d 7-bonding is not important in the silicon—manganese and germanium—
manganese bonds and that the main effect in changing from methyl to germyl
to silyl is an increase in the strength of the ¢ bond.

Experimental

Samples of silylmanganese and germylmanganese pentacarbonyl were
prepared by reacting silyl iodide or germyl bromide with sodiummanganese
pentacarbonyl in diethy! ether [4, 5]. The products were collected at 77 K and
purified by fractional condensation. Purities were checked spectroscopically.

Scattering intensities were recorded photographically using a Balzers
KDG?2 gas diffraction apparatus and were digitised on a Joyce Loebl micro-
densitometer. During exposures the samples were kept at 323 K [SiH3;Mn(CO)s]
and 328 K [GeH;Mn(CO);] and the nozzle at 333 K. Three nozzle to plate
distances were used (1000, 500 and 250 mm) giving data over a range of the
scattering variable, s, of about 10-300 nm™'.

Calculations were carried out on an IBM 370/155 computer at the
Edinburgh Regional Computing Centre with data reduction and least squares
refinement programs previously described [6, 7].

Table 1 shows weighting points (used to set up the off diagonal weight
matrix), correlation parameters and scale factors. The complex scattering
factors of Cox and Bonham [8] were used and all distances are r,. The electron
wavelength used was determined by direct measurement of the accelerating
voltage and from the diffraction pattern of powdered thallous chloride.

Molecular model

For the purposes of least squares refinements it was assumed for each
molecule that the manganese pentacarbonyl group had local C,;, symmetry, the
MH; group had local C,, symmetry and all the manganese—carbon and
carbon—oxygen bonded distances were equal; since there is a twelve fold barrier
to rotation about the M—Mn bond, free rotation about this bond was assumed.
These assumptions allowed the molecule to be described uning the 4 bonded
distances and the following angles: H—M—H, Mn—C.;—0.q and C,,—Mn—C,,.

The assumption that the manganese—carbon distances are equal for axial
and equatorial carbons might have proved to be unjustified, but it is unlikely
that the difference will be greater than the 4 pm found in methylmanganese
pentacarbonyl and may be around 2 pm as in manganese pentacarbonyi hydride,
or even less. Such small differences within the molecule would be very difficult
to determine reliably by electron diffraction. There is no evidence for any
asymmetry of the Mn—C peak in the radial distribution curves nor are the
experimental Mn—C or Mn ... O amplitudes of vibration significantly greater
than values found in other manganese pentacarbonyl derivatives.

Refinements

Silylmanganese pentacarbonyl
The silicon—manganese, manganese—carbon, and carbon—oxygen bonded
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Fig. 1. Radial distribution curve, P(r)/r, and final deviations hetween experimental and t.hsoretical curves
for SiH 3M2(CO)s. Before Fourier inversion the data were multiplied by 5. exp(—0.0025 s“}(Zpmn—Fan)-

(Zo—Fq)-

distances and their amplitudes of vibration all refined satisfactorily, as did the
Mn—C—0O and C—Mn—C angles. The overlapping of large numbers of peaks in
the radial distribution curve (Fig. 1) necessitated the refinement of certain
groups of vibrational amplitudes as single parameters (see Table 2). Most groups,
other than those involving hydrogen atoms, refined satisfactorily; the amplitudes
of vibration of the silicon to axial carbon and silicon to axial oxygen being the
only exceptions. These amplitudes along with al! parameters involving hydrogen
were set at fixed values.

The final R factor was 0.16. Table 3 shows the least squares correlation
matrix, and final molecular scattering intensity and difference curves are shown
in Fig. 2. The intensity data or uphill curves may be obtained from the authors
on request.

Germyl manganese pentacarbonyl

The refinements were very similar to those of silylmanganese pentacarbonyl.
The germanium—manganese, carbon—manganese and carbon—oxygen bonded
distances and their amplitudes of vibration and the Mn—C—0 and C—Mn—C
angles all refined satisfactorily.

Here also there is considerable overiapping in the radial distribution curve
(Fig. 3) which necessitated the constraint of certain groups of amplitudes
(Table 2). Amplitudes of vibration involving right angled carbon---carbon,
carbon---oxygen and oxygen---oxygen distances did not refine, nor did any
parameters involving hydrogen. These parameters were set at fixed values. The
final R factor was 0.13.

Table 4 shows the least squares correlation matrix, and final molecular
scattering intensity and difference curves are shown in Fig. 4. The intensity
data or uphill curves can be obtained from the authors on request.

Shrinkage corrections applied were the same as those applied in the
structure determination of pentacarbonyl(trifluorophosphine)molybdenum [7].

{continued on p. 233)
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Fig. 2. Observed and firal weighted difference molecular intensities for SiH3Mn(CO)s for data sets
obtained with nozzle-to-plate distances of 250, 500 and 1000 mm.
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Fig. 3. Radial distnbution curve, P(r)/r, and final differences between experimental and calculated curves
for GeH3Mn(CO);. Before Fourier inversion the data were multiplied by s. exp(0.0025 52)/(zMn"FMn)'
(Zp—FQ)-

Discussion

In methylmanganese pentacarbonyl the covalent radius of manganese has
been found to be 141.8 pm [2]. Using this, and taking the covalent radii of
silicon and germanium to be 110.0 and 117.8 pm respectively (calculated from
bond lengths between tetrahedrally coordinated atoms in ethane [9], methyl-
silane [10j and methylgermane [11]), we would expect the silicon—manganese
bond length to be 251.9 pm and the germanium—manganese bond length to be
259.6 pm. In fact these two bond lengths turn out as 240.7 and 248.7 pm
respectively.

These two bond lengths could be taken to indicate that multiple bonding
does exist between the manganese and silicon or germanium atoms in these
compounds. This multiple bonding would involve the 7 3d orbitals of manganese
and the 3d (or 4d) m-orbitals of silicon (or germanium). However, He' photo-
electron spectra of these compounds [3] indicate that the main change in
going from a methyl to a silyl to a germyl substituent on manganese penta-
carbonyl is a ¢ effect, and that silyl is a slightly better o acceptor than germyl
which is a much better o acceptor than methyl; that is, silyl is slightly more
electropositive than germyl which is very much more electropositive than
methyl. This theory would also lead to similar results to those we have found
here. We intend to make further studies to find out more about these effects.
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Fig. 4. Observed and final weighted difference molecular intensities for GeH3Mn(CO)s for data sets
obtained with nozzle-to-plate distances of 250, 500 and 1000 mm.
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